How I Built a Real-Time Face Detector in Python Without TensorFlow or Mediapipe
Demo :
Click Video πππ
π’ Features:
-
Embed YouTube Short
-
Include GitHub link (if public)
-
Short write-up: Explain core logic and how Haar Cascade works
-
SEO Tip: Use keywords like “Python face detection 2025”, “OpenCV tutorial real time”
Code :
import cv2
import tkinter as tk
from tkinter import Label
from PIL import Image, ImageTk
# Haarcascade XML for face detection
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
# Initialize webcam
cap = cv2.VideoCapture(0)
# Create GUI Window
root = tk.Tk()
root.title("Modern Face Detector - FuzzuTech")
root.geometry("700x550")
root.configure(bg="#1e1e1e")
label = Label(root)
label.pack()
title = Label(root, text="Face Detector - No TensorFlow / Mediapipe", font=("Helvetica", 18), fg="white", bg="#1e1e1e")
title.pack(pady=10)
def detect_face():
ret, frame = cap.read()
if not ret:
return
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb_frame)
imgtk = ImageTk.PhotoImage(image=img)
label.imgtk = imgtk
label.configure(image=imgtk)
label.after(10, detect_face)
detect_face()
root.mainloop()
# Release webcam after window closes
cap.release()
cv2.destroyAllWindows()
Comments
Post a Comment